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1' Sir:

The unusual facility of the four-membered ring peroxides to generate elec-

tronically excited states by thermolysis has focused attention on their chemi-

cal behavior. In recent reports we have described our findings on the chemi-
cal behavior of dimethyldioxetanone ( 2,3,4,5 In particular we find that

thermolysis of dioxetanone 1 in any one of a number of non-polar solvents at

30'C gives both excited singlet and triplet acetone in yields of 0.1% and 1.5%

respectively; eq. l.3 Also, we find that dioxetanone 1 is subject to catalytic

decomposition by electron donors (ACT), and excited state generation by the

path we have designated chemically initiated electron exchange luminescence

( C I E E L ) ;4 ,6 e q . 2 .

0-0 0

CH3  0 CH3 CH3  CI 3 CH3  3

ACT2 ./ + ACT* (2)CO\ ACT + ACHS- + ACT CH3A CH3

3 3
CH3

Tetramethyldioxetane (2) also generates electronically excited acetone upon

thermolysis. However, in contrast to dioxetanone 1 it does not react readily

with electron donors, and the yield of excited acetone from Z is nearly 20 times
greater than from 1 despite the fact that the dioxetanone rearrangement is more

exothermic by ca. 20 kcal/mole.8  Herein we report the results of theoretical

calculations on the parent unsubstituted dioxetanone. These calculations offer

considerable insight into the structure and reactivity of this molecule, and

provide a basis for understanding the different properties of peroxides .1. and



SCF calculations were performed on dioxetanone using a 4-31G basis set9 of

contracted Gaussian functions. The equilibrium structure, shown in Figure 1,

was determined using the gradient procedure of Pulay,10 and by point-by-point

serches. The energetics of stretching the oxygen-oxygen bond was investigated

by fixing its length and then re-optimizing the two C-O-O ring angles, constran-

ing the ring to be planar in these calculations. The effect of increasing the

oxygen-oxygen bond length on the energy of the molecule is given in Table 1.

Orbital energies at these distorted structures are given in Table 2, and plots

of selected orbitals are given in Figure 2.11 SCF energies of the A' anion

state, formed by adding an electron to the l6a' orbital, were calculated at

these optimized structures.

The equilibrium ground-state structure of dioxetanone that is predicted by

these calculations has two noteworthy aspects. The oxygen-oxygen bond length

is somewhat longer than that determined by X-ray crystallography for adamantyli-

deneadamantane-l,2-dioxetane (Q) by Wynberg and coworkers. 12  However, the most

surprising feature of the predicted structure of dioxetanone is that the atoms

of the four membered ring are found to be essentially coplanar. This finding

is in contrast to the structure of dioxetane , in which one oxygen atom of the

peroxide is lifted ca. 210 from the plane defined by the remaining ring atoms.

Of significance to the understanding of the thermal chemistry of dioxetanone

is the prediction that stretching the oxygen-oxygen bond does not cause a concomi-

tant increase in the length of the ring carbon-carbon bond, Table 1. Although we

have not carried the calculations all the way through to the transition state,

progress along the reaction coordinate is significant since the energy increase

obtained in a substantial fraction of the experimentally determined activation

,go" _____



. enthalpy for dioxetanone 1. The implication of these findings is that the

thermolysis of dioxetanone may proceed through the biradical state formed by

crossing of the 14a'and 16a' orbitals as a result of cleavage of the oxygen-

oxygen bond. A similar conclusion was reached by Goddard and Harding13 for

dioxetane using GVB calculations. This conclusion is supported by extensive

experimental evidence.
14

These findings suggest an explanation for the difference in excited state

yields obtained from thermolysis of dioxetanone I and dioxetane Z. Cleavage of

the oxygen-oxygen bond in both cases leads to a biradical presumably initially

in a singlet state. Intersystem crossing to the triplet biradical is therefore

in competition with cleavage of the ring carbon-carbon bond; Scheme 1.
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For the case of dioxetanone the loss of CO2 competes with intersystem crossing;

for dioxetane it is the loss of a simple carbonyl compound that is in competi-

tion with intersystem crossing. The former is more exothermic and, therefore,

is probably more rapid, giving the biradical less opportunity to cross to the

triplet manifold. Consistent with this postulate is the experimental observa-

tion that the yield of excited sinqlet acetone from thermolysis of 1 and 2 is

quite similar, but he yield of triplet acetone from 1 is considerable reduced

from that of 3

Our formulation of the CIEEL mechanism has as a key tenet the activated

transfer of an electron from an electron donor to the peroxide. We postulate further

that the oxygen-oxygen bond of the peroxide cleaves either simultaneously with

the transfer of the electron or very rapidly following its arrival. Several

of the results of the calculation bear on this mechanism. First, transfer of

an electron from an activator (perylene, for example) to dimethyldioxetanone is

estimated from electrochemical data to be endothermic at the equilibrium ground
15

state geometry. Indeed, we have measured the activation energy for this

process and find it to be 16 kcal/mole. The calculations show that stretch-

inq the oxygen-oxygen bond of dioxetanone results in a large decrease in the

energy of the unoccupied 16a' orbital (Table 2), thereby facilitating the

electron transfer. Thus, as we have previously sugqested, the activating pro-

cess for the electron transfer in the CIEEL mechanism is most likely stretching

of the oxygen-oxygen bond.

The second result of the calculation that aids in the description of the

CIEEL mechanism concerns the energy of the radical anion obtained by placing

an electron in the 16a' orbital. This orbital is antibonding between the

peroxide oxygens, Figure 2d. Table 3 lists the energy of the anion at various

oxygen-oxygen bond distances. The striking result is that on increasing this



bond distance 0.2 A from its equilibrium value the energy of the anion drops by

ca. 52 kcal/mole. We take this result to indicate that the oxygen-oxygen bond

of the radical anion of dioxetanone is dissociative and that irreversible cleav-

age follows immediately the receipt of the electron. This conclusion is entirely

consistent with our experimental observations on the dioxetanone system.

In sum, these calculations provide new insight into the detailed chemistry

of dioxetanone, though highly quantitative predictions will require more exten-

sive calculations. They substantiate a reasonable rationalization of the differ-

ent yields observed from dioxetanone -11 and dioxetane ,. And they provide some

confirmation of the major postulates of the CIEEL mechanism.
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Table 1. Dioxetanone Structures and Relative Energies.

RO-o(A) RC-c(A) !COOa iCO0 E(a.u.) AE(kcal)

1.503 1.502 89.5 90.5 -300.8921 0.0

1.525 1.502 89.0 90.0 -300.8919 0.2

1.55 1.502 88.5 89.5 -300.8910 0.7

1.60 1.501 87.7 88.4 -300.8877 2.8

1.70 1.501 85.5 86.5 -300.8765 9.8

aThe methylene carbon atom is referred to.
bThe carbonyl carbon atom is referred to.

b=
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Table 2. Dioxetanone Orbital Energies. a

RO00

1.503 1.525 1.55 1.60 1.70

Virtual 18a' 0.237 0.236 0.234 0.233 0.231

17a' 0.214 0.214 0.214 0.214 0.214

16a' 0.138 0.127 0.114 0.090 0.046

5a" 0.123 0.123 0.124 0.124 0.125

Occupied 4a" -0.483 -0.486 -0.489 -0.493 -0.501

15a' -0.492 -0.492 -0.492 -0.491 -0.490

14a' -0.577 -.0573 -0.568 -0.558 -0.537

3a" -0.586 -0.585 -0.583 -0.580 -0.575

13a' -0.601 -0.603 -0.605 -0.609 -0.617

2a" -0.628 -0.628 -0.628 -0.629 -0.631

12a' -0.724 -0.723 -0.722 -0.720 -0.717

IIa' -0.745 -0.744 -0.742 -0.738 -0.733

la" -0.762 -0.760 -0.758 -0.756 -0.751

aOrbital energies were evaluated at the structures in Table 1 and are given

in a.u.



ai

Table 3. Anion Energies.

ROO(A) E(a.u.) AE(kcal)

1.503 -300.8284 0.0

1.525 -300.8419 -8.5

1.55 -300.8555 -17.0

1.60 -300.8780 -31.2

1.70 -300.9111 -51.9

astructures used were those in Table 1.
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Figure Captions

Figure 1. Optimized equilibrium structure of dioxetanone.

Figure 2. Molecular orbital contour plots of the occupied or internal orbitals,

(a) 13a', (b) 14a', and (c) 15a', and the virtual or external

orbital (d) 16a'.
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